
Using Docker Desktop in
Large-Scale Enterprises
A practical guide for a compliant setup and
usage of linux and windows containers on
windows workstations within complex corporate
environments using docker desktop.

Written By CARIAD SE
Valentin Pravtchev
Julius Pravtchev

Reviewed By Docker Inc.
Gabriela Georgieva
Jason Bivins
Marc Sherwood

Introduction
In 2013, Docker Inc. revolutionized the container landscape by releasing its first version of the Docker container

engine. Characterized by an intuitive user interface and a robust container ecosystem, Docker simplified the

complex task of setting up containers.

Since 2013, the use of container manager solutions has become highly diverse. Kubernetes has become the

primary choice for targeting productional server platforms or managing heavy workloads within Continuous

Integration and Continuous Deployment (CICD) environments. Regarding the inner development loop on

local developer machines, Docker Inc. has introduced another container manager known as Docker Desktop,

which, in turn, has proven to be an excellent workstation solution. It strongly emphasizes facilitating a seamless

human-machine interaction and is shipped with many enterprise-grade security controls, making it highly

suitable for corporate environments.

Large enterprises typically maintain a heterogeneous development stack, targeting both Windows and

Linux platforms. This diversity arises from various factors, including certification of specific tools for a single

operating system, lack of support for certain tools on alternative operating systems, or contractual obligations

with vendors. Consequently, Docker Desktop becomes an invaluable asset in such complex setups, as

it provides a unique solution to seamlessly operate with both Windows and Linux containers on a single

(Windows) machine.

While it can be easily installed on personal workstations, deploying and operating Docker Desktop within

complex enterprise environments alongside proxies, file encryption, or virtual private networks (VPN) is

challenging. The strict compliance that many enterprises must guarantee further intensifies this complexity.

This whitepaper addresses typical challenges when setting up and working with Docker Desktop inside huge-

scale enterprises. It aims to support companies in securely deploying and maintaining Docker Desktop within

their compliant environments.

Using Docker Desktop in large-scale enterprises2

Contents

2 Introduction

4 Understanding the system landscape

5 Exploring container manager solutions
on Windows workstations

6 Unveiling the Docker Desktop system architecture

9 Tackling enterprise challenges with Docker Desktop

15 Handling huge-scale deployments on
regulated workstations

19 Securing Windows Subsystem
for Linux 2 (WSL2)

25 Unveiling Windows Containers
best practices

31 Further enterprise considerations

32 References

Using Docker Desktop in large-scale enterprises3

Understanding the system landscape
Comparative look at Docker Desktop against Docker CE
Docker Desktop, developed and released by Docker Inc., is a multi-component application serving as

an alternative container management solution alongside the conventional Docker CE. Contrary to a

widespread misconception that Docker Desktop, formally known as Docker On Windows, is exclusively

available on Windows, it has extended full support on various Linux distributions and MacOS.

As illustrated in Figure 1, Docker Desktop encompasses all features present in Docker Engine while

providing a comprehensive user interface alongside various enterprise-grade features. Especially, its

ability to seamlessly switch the development context between the Linux and Windows container engines

from a single instance is an invaluable asset for large-scale enterprises requiring containerization on both

Windows and Linux development tools.

Figure 1: Overview of the capabilities of Docker CE in comparison to Docker Desktop. Docker Desktop encompasses all essential
features of Docker CE while notably enhancing its functionalities, particularly enterprise-grade features.

Docker Buildx

Registry Access Management

Docker Extensions

Docker Scout

Docker Scout Image Access
Management

SCIM

Docker GUI Windows
Containers

Docker CE

Docker Build

Docker CLI

Docker Compose

Using Docker Desktop in large-scale enterprises4

Exploring container manager solutions
on Windows workstations
Linux containers vs. Windows containers
On Windows workstations, developers have various options beyond Docker Desktop for implementing

containerization. Integrating a full-featured Linux kernel through the so-called Windows Subsystem for Linux

2 (WSL2) in a highly optimized Hyper-V virtual machine significantly enhanced the seamless utilization of

Linux containers directly from Windows. However, containers are not an exclusive Linux feature, as Windows

incorporated containerization into its NT kernel with the release of Windows Server 2016. All major Windows

platforms currently support the containerization of Windows applications, mainly following the principles

of Linux containers. Nevertheless, Windows containers differ significantly in terms of version compatibility,

runtime-level architecture, image size, and security considerations.

Introducing Linux container solutions
According to Linux containers, users can work with powerful alternatives such as Podman Desktop by Red

Hat Inc. or Rancher Desktop by SUSE. Both tools follow the same approach, like Docker Desktop, where the

command line and desktop interface are installed directly on Windows while deploying the container engine

inside the WSL2 environment. Podman Desktop is specifically designed to work seamlessly with the Podman

container engine, which deploys ’rootless’ containers known for their pivotal security benefits. Rancher Desktop,

in turn, wraps various container tools such as docker-cli or nerdctl on the Windows side, along with dockerd or

pure containerd as the container engine inside WSL2.

Finally, users can install any container manager, such as the Docker or Podman engine, directly within a WSL2

Linux distribution. This approach comes with the notable drawback that this kind of installation is limited to a

single WSL2 distribution.

Introducing Windows container solutions
Regarding Windows containers, Rancher Desktop and Podman Desktop currently lack support. In this scenario,

the Docker CE / Moby for Windows, the Mirantis container runtime, or the containerd / nerdctl toolchain are

possible alternatives to Docker Desktop. The latter claims to be a compatible option with Docker; however, it

only provides experimental Windows support and, thus, is not suitable for commercial usage. In contrast, the

enterprise-focused Mirantis container runtime, formerly known as Docker Enterprise Edition (EE), proves to be a

robust choice for working with Windows containers.

Using Docker Desktop in large-scale enterprises5

Unveiling the Docker Desktop system
architecture
Exploring complexities of Linux container engine Architecture
As illustrated in Figure 3, Docker Desktop implements a hybrid system architecture. The command-line

interface, docker.exe, and the graphical user interface, docker-desktop.exe, are directly deployed on the host

alongside crucial helper processes like com.docker.backend.exe, com.docker.service.exe, etc. At the same time,

the container engine dockerd operates within the WSL2 virtual machine. Within WSL2, containerd is employed

to launch a container hosting various services to manage containers, including dockerd. The launch and

setup of the WSL2 virtual machine is initiated by the helper service com.docker.service.exe that interacts with

the wsl.exe, which, in turn, utilizes the Windows services Linux Subsystem Manager Service (LXSS) and Host

Compute System (HCS) to manage the lifecycle of the WSL2 virtual machine and to provide the general

virtualization platform on operating system level.

Besides the resources mentioned above, the Docker Desktop installer also deploys two internal WSL2

distributions: docker-desktop and docker-desktop-data. The docker-desktop distribution hosts the resources,

such as the Docker engine, to work on containers. If Enhanced Container Isolation (ECI) is not enabled, the

following commands demonstrate how containerd is leveraged to employ the Docker engine, dockerd, within a

dedicated container:

Figure 2: Sequence of operations involves starting the special-purpose WSL2 distribution, docker-desktop, and then inspecting the
processes within this distribution to identify those responsible for initiating dockerd within a containerd container

boot docker-desktop

PS C:\Users\MYUSER> wsl -d docker-desktop

get processes

wslguest:/tmp/docker-desktop-root/mnt/host/c/Users/MYUSER# ps aux | grep dockerd

 609 root 0:00 /usr/bin/logwrite -n dockerd /bin/sh -c export LISTEN_PID="$$"; exec /usr/local/

bin/dockerd --containerd /run/containerd/containerd.sock --pidfile /run/desktop/docker.pid --swarm-

default-advertise-addr=eth0 --host-gateway-ip <host-ip>

 615 root 0:00 /usr/local/bin/dockerd --containerd /run/containerd/containerd.sock --pidfile /

run/desktop/docker.pid --swarm-default-advertise-addr=eth0 --host-gateway-ip <host-ip>

Using Docker Desktop in large-scale enterprises6

In addition, the docker-desktop-data distribution hosts containers and images. Both distributions are

not extendable as fully featured development environments, which, in turn, provide substantial security

advantages; however, they come with significant drawbacks. Because of the missing Linux filesystem, all

projects must be hosted on the Windows filesystem and either bind-mounted into Linux containers or

persisted through volumes. This arrangement leads to noticeable performance issues due to file system

translation tasks, making it unsuitable for large-scale Linux-based projects.

Figure 3: Abstract system architecture of Docker Desktop’s Linux container backend using the Windows Subsystem For Linux 2 (WSL2).

It is crucial to emphasize that the Linux container engine, dockerd, operates with elevated root rights within a

WSL2 distribution. While this poses a significant security risk in native Linux platforms, it is more or less negligible

in the context of virtual WSL2 environments. WSL2, instead, is designed as a development tool rather than an

operating system used for any productional scenario. It allows a seamless root login and highly integrates

with Windows tools such as VS Code, Notepad++ or Windows Explorer. In addition, these elevated privileges

cannot be misused to gain SYSTEM rights on the Windows host since WSL2 distributions operate exclusively

within the context of the local Windows user and fully honor the permissions. However, this does not imply

that WSL2 could not be an entry point for any attack, but it demands substantial effort to exploit SYSTEM rights

through WSL2 successfully. Furthermore, Microsoft promptly addresses and resolves any security findings

regarding WSL2. Large-scale enterprises should consider implementing hardening measures to their WSL2

fleet, as outlined in Securing Windows Subsystem For Linux 2 (WSL2). These measures are crucial since WSL2

partially lacks enterprise-grade security controls, especially when utilized on Windows 10.

User Process

Hyper-V Layer

Linux KernelWindows NT Kernel

docker-desktopWindows usermode

User Process

Lightweight Hyper - VVM

LXSS HCS

docker.exe

docker.backend.exe

powershell.exe docker.exe com.docker.cli.exe

dockerd <container>

Containerd containerNamed pipe

<DISTRO>

systemd

bash sed

curl

…

docker-desktop.exe

WinNT SysCall

CPU

Linux SysCall

CPU

dockerBackendV2 wsl.exe

Using Docker Desktop in large-scale enterprises7

Exploring complexities of Windows container engine architecture
As shown in Figure 4, all required resources and processes that manage Windows containers are directly

deployed on the Windows host, including the two privileged processes com.docker.service.exe and

dockerd.exe. While the first process functions as the primary Windows container engine, the latter is a

privileged helper service running in the background and handling all SYSTEM operations necessary for

Docker Desktop to maintain the Windows container environment. This, for instance, includes managing

the life cycle of the Hyper-V DockerDesktopVM (DockerVM), initiating and terminating dockerd.exe, or

caching certain security policies. Like setting up Docker CE on Linux and Windows, low-privilege users

can seamlessly work with Docker Desktop when provided to the local Windows group docker-users. Its

members are fully permitted to access the protected named pipe .//./pipe/dockerBackendV2, where both

docker-desktop.exe and com.docker.service.exe are directly connected.

As described in Unveiling Windows Containers best practices, the Windows container daemon is a

potential entry point for a SYSTEM exploit. In contrast, the com.docker.service.exe provides a minimal attack

surface without going into detail and requires at least a Code Injection Vulnerability. It's worth noting that

specific versions of Docker Desktop disabled the service from permanently running in the background.

This must be considered when deploying Docker Desktop at scale without granting elevated rights to the

users. Furthermore, there are configuration options to disable the usage of Windows containers entirely.

Figure 4: Abstract system architecture of Docker Desktop's Windows container backend in hyperv-isolation mode

Hyper-V Layer

Windows NT KernelWindows NT Kernel

OCI ContainerWindows usermode

WinServer Container „docker“

wininit.exe

powershell.exe

WinNT SysCall

CPU

WinNT SysCall

CPU

System

Named pipe

boots

System

com.docker.service.exe

docker.exe

...

com.docker.service.exe

cmd.exe docker.exe com.docker.cli.exe

Named pipe

com.docker.service.exe

dockerBackendV2 dockerd.exe

Using Docker Desktop in large-scale enterprises8

Windows containers can operate in two isolation modes: process-isolation and hyperv-isolation. The first

mode isolates containers through traditional namespaces, resource control, etc., and deploys containers

directly on the host kernel; this isolation mode is analogous to conventional Linux containers running on

a Linux host. The hyperv-isolation starts a stripped-down but highly optimized Hyper-V virtual machine

named DockerDesktopVM (DockerVM) and deploys a Windows-based container into it. This gives each

container a separate kernel and, in consequence, provides isolation on the hardware level, which is, in

turn, a firm security boundary.

On Windows 10 and 11, the container engine defaults to running containers in hyperv-isolation, whereas on

Windows Server, the default isolation mode is process-isolation. In addition, only versions of Windows 10

build 17763 or greater provide experimental support for process-isolation, with a strong emphasis on not

using this setup for any productional scenario.

Tackling enterprise challenges with
Docker Desktop
Crafting a seamless user and license management

Choosing the suitable pricing model

Large enterprises, defined as those with over 250 employees or an annual revenue exceeding $10 million,

necessitate a paid subscription for the commercial use of Docker Desktop. Although this is a mandatory

requirement, there are no additional restrictions on selecting the specific pricing model. Following Table 1

outlines available pricing models and the inclusion of essential enterprise-grade security controls.

Table 1: Excerpt about critical enterprise-grade security controls that should be considered when choosing a mandatory pricing
model for the commercial use of Docker Desktop.

Pro Team Business

Kubernetes + + +

Commercial Support (+) (+) +

Single Sign-On (SSO) - - +

Cross-Domain Identity Management (SCIM) - - +

Hardened Docker Desktop (incl. Settings Management) - - +

Image Access Management - - +

Registry Access Management - - +

Using Docker Desktop in large-scale enterprises9

It is obvious that the Business Subscription encompasses all essential enterprise-grade security features

necessary for a compliant usage of Docker Desktop within large-scale enterprises. It includes support for

Single Sign-On (SSO), System for Cross-Domain Identity Management (SCIM), standardized deployment on

regulated workstations at scale through Settings Management, and integration possibilities with third-party

platforms like JFrog Artifactory or Azure Container Registry through Registry Access Management to secure the

whole container ecosystem of a company. These features contribute to a more secure software supply chain

in concert with secure practices across other tools and processes.

While Handling huge-scale deployments will describe the typical challenges of a compliant and large-scale

deployment of Docker Desktop on tightly regulated workstations, the following sections will outline the main

configuration steps of the Docker Business Organization itself. Figure 5 gives an overview of the initial steps

required to purchase a paid license, set up a Docker Hub Organization, and securely deploy Docker Desktop on

a local developer workstation.

Figure 5: Flow chart about the main steps to set up and configure Docker Desktop in large-scale enterprises.

Setting up user access control
Docker Desktop's Business subscription offers the capability to restrict local access to Docker Desktop and its

resources exclusively to users who are authenticated through the company’s identity providers (IdPs). Those

attempting to use personal login credentials are restricted. Consequently, all global security settings are

consistently applied, and the user can fully leverage the features provided by the respective pricing model.

This is possible by the non-negotiable features Enforced Sign-In and Single Sign-On (SSO). While Crafting a

smooth installation procedure outlines the activation of Enforced Sign-In on local workstations, implementing

a proper SSO integration is required first.

The SSO integration follows the workflow outlined in Figure 6. It is important to note that SSO can also be

configured via the Admin Console, however, following steps refer on the traditional setup in Docker Hub.

Registered User
Creates Docker Free
Organisation

Company Obtains
A Paid License Model

Docker Desktop
Is Deployed
on Workstations

Docker Inc.
Upgrades The Docker
Free Organization

Organization
Security Settings
Are Configured

• Globally Controlled Settings

• Enforced Sign-In

• Identity Management (SCIM, SSO)

• Registry Access Management

• Image Access Management

Using Docker Desktop in large-scale enterprises10

Figure 6: Flow chart about the main configuration steps to setup a proper SSO integration with company identity provider(s).

To get started, head to your Docker Hub organization's Settings page and navigate to the Security tab. Here,

you can kick off the SSO setup process by clicking the Add a domain button. Next, you'll need to specify a non-

public domain without protocol or www information. Docker Hub will then generate a TXT Record Value, which

must be added to the TXT record associated with the previously added domain in your company's DNS. Allow

72 hours for DNS changes to take effect and for your domain to be verified.

Figure 7: Overview about existing domains and there connection status in the Security tab of a Docker Hub business organization

Following this, you can initiate the setup of a SSO connection within your Docker Hub organization by returning

to the Security tab in the Settings menu. As you set up this connection, you will notice that Docker supports

SAML 2.0 and Azure AD (OIDC) authentication and will provide you with all the necessary information required

for creating the SSO connection within your company IdP, as outlined in Table 2.

Add And Verify
Your Company
Domains(s)

Finalize The SSO
Connection in
Docker Hub

Create Your
SSO Connection
in Docker Hub

Configure Your
Identity Provider

• Use the domain(s) your developers shall use
 for login Docker Desktop and Docker Hub

• Docker integrates with SAML and Azure
 AD (OIDC) authentication

Using Docker Desktop in large-scale enterprises11

Table 2: Overview about the necessitated properties to create a SSO connection for Docker Hub on a company IdP server.

Be aware that Docker retrieves the user's email address and name from the Identity Provider (IdP) when a user

attempts to log in. The email address serves as the unique identifier for the user. Since the setup of SSO within

your IdP might differ from company to company, it cannot be detailly explained here and must be retrieved

from the official documentation of Docker.

You are ready to complete the SSO connection setup within Docker Hub. When users attempt to log in to Docker

Hub or Docker Desktop, they'll need to use their company email address. Remember to enable Enforced Sign-In

to ensure that colleagues use their company IDs when using Docker Desktop locally.

Docker's SSO implementation uses Just-in-Time (JIT) provisioning by default. This means any users signing in to

Docker through their company's IdP will get assigned a license by being added to their Docker Hub organization.

To control this, company admins can enable the System for Cross-domain Identity Management (SCIM)

2.0 for their business. SCIM provides automated user provisioning and de-provisioning for your Docker Hub

organization through your IdP. Once you enable SCIM in Docker and your IdP, any user assigned to the Docker

application in the IdP is automatically provisioned in Docker and added to the organization or company.

Similarly, if a user gets unassigned from the Docker application in the IdP, this removes the user from the

organization or company in Docker.

SCIM also synchronizes changes made to a user's attributes in the IdP, for example the user’s first name and

last name. You can enable SCIM from your Docker Hub organization or Admin Console by navigating to the SSO

settings page and selecting 'Setup SCIM'. Here, you will then be able to obtain the SCIM Base URL and API Token

required by your IdP to enable SCIM.

SAML 2.0 Azure AD (OIDC)

Entity ID:
Identifies Docker Hubs SSO system and facilitates
secure communication between Docker Hub and
company IdP.

Redirect URI:
Endpoint where users are redirected after they
successfully authenticate with Azure AD

ACL URL:
Manages access permissions and secure
communication between Docker Hub and
company's IdP

Using Docker Desktop in large-scale enterprises12

Figure 8: To activate SCIM, you need to access your Docker Hub organization's Security tab in the Settings menu. From there,
simply right-click on the relevant SSO connection and select the "Enable SCIM" option.

Controlling image and registry access
The Log4Shell vulnerability, part of the Log4J Library within the version range of 2.0-2.14 and labeled with

CVE-2021-4428, caused significant issues for numerous enterprises since they lacked an overview of where

this high-risk vulnerability was shipped together with their products. To mitigate the risk of such Supply

Chain Vulnerabilities, a Software Composition Analysis (SCA) process is recommended throughout the

entire life-cycle of an application. Regarding containers, the SCA has to encompass the whole ecosystem,

starting with centralized quality gates for the build and upload process and regular monitoring and

scanning of container registries.

While the risks introduced by such kinds of vulnerabilities are significantly low for developer workstations

that typically operate within internal networks, systematic control of available images should also be

integrated into the SCA process. Additionally, large-scale enterprises incorporate well-defined processes

before introducing any new development tool on local workstations, underscoring the significance of

centralized control over the local deployment of containers.

Docker Desktop offers two integration possibilities to gain centralized control of OCI image access for a

fleet of enterprise workstations. The first feature, called Image Access Management (IAM), can be activated

within the Settings space of a Docker Business Organization and is automatically applied to the local

workstations by activating Enforced Sign-In. IAM is suitable for companies that use Docker Hub as their

primary container registry platform. IAM operates on the image level and empowers enterprises to finely

configure global permissions, allowing developers to pull images based on specific OCI image types. Table

2 lists the available image types on Docker Hub and their corresponding level of reliability. It is strongly

recommended that restrictions be enforced on accessing Community Images, as they pose high risks for

Malicious Container or Supply Chain attacks.

Using Docker Desktop in large-scale enterprises13

Using Docker Desktop in large-scale enterprises14

Table 3: Overview of OCI image types that are hosted on Docker Hub. The kind of OCI image gives a precise conclusion about
the reliability of the image source and can be facilitated by Image Access Management (IAM). *) Huge-scale enterprises must
incorporate security measures and a centralized way of building and uploading OCI images to ensure the reliability of their
internally developed OCI images.

In the case of a company using another platform, such as JFrog Artifactory, to primarily host their OCI

Images, Docker Desktop provides so-called Registry Access Management (RAM) to have a central control

about which specific container registry can be used to pull an image to the local workstation. RAM can

also be activated and configured within the Settings space of a Docker Business Organization and, luckily,

works with regular expressions, as shown in Figure 9.

Figure 9: Facilitating Registry Access Management (RAM) for a particular container registry within the Settings space of a Docker
Business Organization. The input value for the Registry address integrates with regular expressions.

In line with full-featured RAM, it is highly recommended that enterprises update Docker Desktop to a

version equal to or beyond 4.21, as earlier versions lack RAM support for Windows-based container

registries. To apply RAM on Windows-based containers, the Windows container daemon has to use Docker

Desktop’s internal proxy, as shown in Figure 14. Alternatively, companies can exclude Windows containers

from their local workstations.

Settings Description Reliable?

Docker Official Respective type for those OCI images that Docker Inc. publishes. Yes

Verified Publisher Respective type for those OCI Images that commercial vendors
verified by Docker Inc. publish. Yes

Organization
Respective type for those OCI Images created by members of
the Docker Hub organization and published to private Docker Hub
repositories.

Yes*

Community Respective type for those OCI Images published by unknown and
not officially verified image vendors. No

Handling huge-scale deployments on
regulated workstations
Crafting a smooth installation procedure
Although installing Docker Desktop is straightforward by executing the released 'Docker Desktop Installer.

exe', large enterprises encounter a significant challenge. Typically, those enterprises apply tight regulations

to their local workstations, which include the absence of local SYSTEM rights for their developers. However,

those elevated permissions are essential for executing the installer and activating Docker Desktop’s system

prerequisites. These prerequisites encompass Optional Windows NT Kernel features, detailed in Table 3, and

the Store Version of WSL, recommended since recent features of WSL, such as GPU or GUI support and security

updates, are urgently accessible that way.

Table 4: Overview of the Optional Windows NT Kernel features that contribute to the containerization of Linux and Windows Containers
on the local developer workstations. *The Windows-Subsystem-For-Linux optional NT Kernel feature is no longer required when
operating on Windows 11, since the so-called Store Version is employed.

Optional NT Feature Description Required For

Containers
Containers feature enables the OCI-compliant Host
Compute Service (HCS), a Windows API used to
operate Windows containers.

Windows
Container
Engine

Hyper-V
Hyper-V is a Windows feature that provides hardware
virtualization (isolation), allowing multiple operating
systems to run on a single host machine.

Windows
Container
Engine

Virtual Machine Platform
Windows Machine Platform enables the creation
and management of virtual machines with the aid
of Hyper-V.

Linux
 Container
Engine

Windows Subsystem For
Linux (WSL)

Inbox version of WSL that provides a Linux-compatible
kernel interface that supports running Linux
applications on Windows.

Optional*

Windows Hypervisor
Platform

Windows Hypervisor Platform provides a Windows API
to level 2 virtualizers such as VirtualBox to allow them
to spawn VMs on the host despite enabled Hyper-V.

Optional

Using Docker Desktop in large-scale enterprises15

It is typically advised to employ common package managers like Microsoft WinGet or Chocolatey for deploying

applications like the WSL Store Version or Docker Desktop and to leverage centralized administration tools such

as Microsoft Intune or System Center Configuration Manager (SCCM) for configuring these tools on a large scale.

If companies do not employ such tools, it becomes vital to have a fundamental understanding of low-level

terminal commands to configure the environment effectively. To begin with, the above-listed Optional Windows

NT Kernel features can be enabled by running the command shown in Figure 10 within an elevated PowerShell.

Figure 10: Activating required Optional Windows NT Kernel features on a local workstation within an elevated PowerShell terminal

To finally apply these changes, you need to restart the system. Following this, you have the option to install the

WSL Store Version. This version can be installed through the Microsoft Store or the command line. The latter

option is the recommended approach for large-scale tool deployments. Microsoft offers the wsl --update or

wsl --install command to facilitate installation. However, it's important to note that both commands have

notable drawbacks, as they do not support installing a fixed WSL version and only update to its latest release.

This may lead to inconsistencies across local workstations and result in additional support efforts for the

internal IT department. Additionally, by default, the --install command deploys a standard Ubuntu distribution

on the local WSL platform, lacking essential security measures, especially when deployed on Windows 10, as

described in Securing Windows Subsystem For Linux 2 (WSL2). Consequently, enterprises can download the WSL

installer for a specific release from Microsoft's official GitHub repository and execute the following command:

Figure 11: Install the WSL Store Version by executing the MSI bundle of the sample release 1.2.5.0 within an elevated PowerShell

It is recommended to use the Add-AppxProvisionedPackage command, as it installs a Windows application

for all users of the respective Windows image. In contrast, the Add-AppxPackage command only installs the

application for a particular (current) user, which is only suitable for large-scale deployments where users have

elevated permissions.

Finally, Docker Desktop can be installed by executing 'Docker Desktop Installer.exe' within an elevated

PowerShell, as shown in Figure 12. Docker Desktop version 4.27 is strongly recommended as it includes

crucial features for complex enterprise environments. Notable enhancements include support for RAM on

Windows containers, compatibility with the --always-run installation command, and resolution of persistent

configuration settings issues disallowing docker login or docker pull inside a WSL2 distribution in case interop

feature is disabled as described in Securing Windows Subsystem For Linux 2 (WSL2).

Install WSL Store Version from it’s sources

PS C:\Windows\System32> Add-AppxProvisionedPackage -Online -PackagePath "\path\to\

installer\Microsoft.WSL_1.2.5.0_x64_ARM64.

Please replace <FEATURE> with following features:

1) Microsoft-Windows-Subsystem-Linux, 2) VirtualMachinePlatform

3) Microsoft-Hyper-V-All, 4) Containers, 5) HypervisorPlatform

PS C:\Windows\System32> dism.exe /online /enable-feature /featurename:<FEATURE>

/all /norestart

Using Docker Desktop in large-scale enterprises16

https://github.com/microsoft/WSL

Figure 12: Install execution for Docker Desktop on Windows PowerShell.

Besides the install argument, huge-scale deployments should provide the following options:

• --quiet

Suppress any output during installation.

• --accept-license:

Accepts Docker Desktop business agreement and, thus, prevents any installation prompt

• --allowed-org=myorgname:

Deploys %ProgramData%/DockerDesktop/registry.json on the local workstation, which applies Enforced Sign-in

and, in consequence, the security measures of the Docker Hub Organization --always-run-service:

Allows low-privileged users to switch between Windows and Linux container engine without UAC prompt as the

SYSTEM level service com.docker.service.exe always runs in the background

• --no-windows-containers:

Organizations that do not require Windows-based containers are strongly advised to provide this install

option since Windows containers significantly increase the attack surface of a system. That way, the Windows

container integration is disabled.

Regarding large-scale deployments, it is crucial to note that an admin account, distinct from the Windows user

of the local workstation, typically takes care of the installation process. In this scenario, the command shown in

Figure 13 must be executed to grant permissions to the local user for utilizing the SYSTEM level workload of Docker

Desktop, as elaborated in Exploring complexities of Windows container engine architecture.

Figure 13: Add a local Windows user to the docker-users group to effectively authorize this user to work with the SYSTEM level workload
of Docker Desktop

Apply globally controlled settings management
Docker Desktop version 4.13 or later introduces an essential enterprise-grade security control, namely

improved settings management. This capability provides a centralized approach for applying standardized

and consistent configuration options to multiple workstations running Docker Desktop. This feature is

applied with Enforced Sign-In and deploying %ProgramData%/DockerDesktop/admin-settings.json on the local

workstation, which remains unalterable without local admin rights. This feature becomes highly valuable in

large-scale deployments when aiming to limit elevated employee permissions.

Apply elevated permissions for user through membership of group

‘docker-users’

PS C:\Windows\System32> net localgroup docker-users <user> /add

Install Docker Desktop from command-line

PS C:\Windows\System32> Start-Process -FilePath 'Docker Desktop Installer.exe'

-ArgumentList 'install', '--quiet', '--accept-license', '--allowed-org=myorgname',

'--always-run-service' -Wait

Using Docker Desktop in large-scale enterprises17

{
 "configurationFileVersion": 2,
 "exposeDockerAPIOnTCP2375": {
 "locked": true,
 "value": false
 },
 "proxy": {
 "locked": true,
 "mode": "system",
 "http": "",
 "https": "",
 "exclude": [],
 "windowsDockerdPort": 65000
 },
 "enhancedContainerIsolation": {
 "locked": false,
 "value": true
 },
 "analyticsEnabled": {
 "locked": true,
 "value": false
 },
 "extensionsEnabled": {
 "locked": true,
 "value": false
 },
 "windowsContainers": {
 "dockerDaemonOptions": {
 "locked": false,
 "value": "{\"debug\": false, \"default-network-opts\": { \"nat\": { \"com.docker.network.
windowsshim.disable_gatewaydns\": \"true\" } } }"
 }
 }
}

The recommendations outlined in Figure 14 propose the recommended settings to activate and restrict the local

workstation. Enhanced Container Isolation (ECI) facilitates the seamless integration of the OCI runtime sysbox-runc,

known for its heightened security control, enabling a more or less secure execution of system-level workloads such

as Docker-in-Docker or Kubernetes-in-Docker within a container. It is important to note that Docker Desktop 4.20 or

higher is required, as earlier versions do not support ECI within WSL2. While activating this feature is advisable, it is

recommended not to restrict it for developers, as certain use cases may not be supported by sysbox-runc.

Furthermore, it is crucial to disable and restrict the exposure of the REST interface of the Docker Engine on TCP port

2375 without proper TLS protection, as this poses significant risks to the local system. While this setup is critical in

a production environment, it may not result in substantial issues when employed in the inner development loop,

where host protection measures such as firewalls offer additional security for the machine. However, there are

limited use cases where this feature is truly beneficial.

Enterprises with finely defined approval processes for installing development tools can employ the option

to deactivate the transmission of analytics to Docker Inc. and prevent the installation of any Docker Desktop

Extensions. Unveiling Windows Containers best practices will discuss essential settings related to the Domain

Name Server (DNS) setup of the Windows container engine.

Figure 14: Proposed content for admin-settings.json that can be installed on local workstations to deploy consistent settings for
large-scale deployments.

Using Docker Desktop in large-scale enterprises18

Securing Windows Subsystem for
Linux 2 (WSL2)
Exploring the WSL2 environment
As outlined in Exploring Complexities Of Linux Container Engine Architecture, WSL2 is a Windows feature that

deploys a Linux environment inside a highly optimized Hyper-V virtual machine, resulting in running Linux

applications 'natively' on Windows. Docker Desktop, in turn, installs two special-purpose WSL2 distributions to

the local WSL environment that are utilized to facilitate the Linux container backend.

Nonetheless, users have the option to deploy fully-featured WSL2 distributions like Ubuntu, Debian, openSUSE,

etc. to their local environment and seamlessly integrate Docker Desktop into them. Microsoft Corp. has

recently introduced several enterprise-grade security controls to enhance the security of WSL in enterprise

environments. These include a new networking stack, support for Microsoft Intune, a WSL plug-in framework

with current support for Microsoft Defender for Endpoint (MDE), and automatic inheritance of host firewall

rules. Nevertheless, the inclusion of fully-featured WSL2 distributions significantly expands the company's

attack surface, especially since many of these features are exclusive to Windows 11. While applying those

features is more than recommended, organizations that rely on alternative tools like Trellix for anti-malware

support or System Center Configuration Manager (SCCM) for tool administration may not benefit from

these enhancements. This underscores the need for additional hardening measures to ensure compliance

and security.

WSL2 distributions are built with common container technologies and adhering to the Open Container

Initiative (OCI) standard and, thus, offer a lightweight solution for a local virtual Linux environment. By default,

the WSL2 environment employs a NAT-based network architecture, that employs a virtual private network

named 'wsl' on the Windows host. This network provides network access to each WSL2 distribution through

a virtual Ethernet adapter with a DHCP-NAT address. Since WSL2 distributions share a common network

namespace, they all receive the same IP address within this network. The host also gains an IP address in this

network, serving as the network gateway and DNS server.

Fortunately, the 'wsl' network is only accessible by the local Windows host, offering a significant security benefit.

To expose WSL2 distributions to remote hosts, local admin rights are required to establish a port proxy linking

a port on the local WSL2 guest to a port on the Windows host. Additionally, the Windows Firewall needs to be

relaxed for this specific port to allow access from other network clients. In enterprise environments where

Group Policies are typically applied, domain admin rights are required for this purpose.

In case the WSL2 environment is used within a company Virtual Private Network (VPN), WSL2 distributions

may encounter significant networking connectivity issues, even when deployed with the mirrored networking

mode. This necessitates to utilize the so-called 'wsl-vpnkit' that generates an additional network interface for

WSL2 guests named 'wsltap', reconfigures their default routing behavior and launches the wsl-gvproxy.exe

process on the host side to receive and forward networking traffic. While this introduces an additional third-

party dependency, that demands additional security assessments, it establishes a reliable network setup that

ensures networking connectivity from office and home.

Using Docker Desktop in large-scale enterprises19

Executing the standard EICAR test on Linux user home

~$ echo 'X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$H+H*' > eicar-test.txt

Additional security considerations for WSL2 guests
For Windows 11, Microsoft introduced a local Hyper-V firewall for WSL2, which is activated by default but can be

deactivated within the .wslconfig located in the Windows user home directory. On Windows 10, this feature is not

available and, additionally, the Windows host firewall rules are not honored by local WSL2 guests. Furthermore,

the Linux file system lacks in terms of anti-malware support, by default, and standard anti-malware solutions

safeguarding the Windows host only extend their protection to the mounted C drive ////// within WSL but

not to the Linux file system, as demonstrated by running the standard EICAR test shown in Figure 15.

Figure 15: Running the standard EICAR test within the (WSL) Linux user home, that will not be recognized by host anti-malware protection.

While WSL2 seamlessly grants elevated root capabilities within its environment, it is fortunate that these

permissions do not extend to SYSTEM rights on the Windows host. However, if both registry and image access

management are absent by the Docker Desktop setup, the lack of firewall and anti-malware protection could

introduce a potential Malicious Container Attack and a Local Privileged Escalation, as illustrated in Figure 16.

Figure 16: Possible threat path through a malicious container download into a fully-featured WSL2 distribution and the Windows
container engine, resulting in a Windows SYSTEM exploit.

Malicious container

• User pulls malicious container since missing RAM and / or IAM

• Switch to Windows
 container and
 exploits to SYSTEM

• Starts Windows
 Apps through
 interop feature

• Exploits through
 bind-mount

• Malware stays
 undected

Windows
system

Windows
userland

WSL2
guest

Malicious container

Using Docker Desktop in large-scale enterprises20

As a result, companies may want to implement additional hardening measures for their WSL2 instances.

Because WSL2 distributions adhere to OCI standards, widely-used container management tools like Docker

(Desktop) or Podman (Desktop) can be employed to deploy customized WSL2 distributions across multiple

systems. The wsl.exe command-line interface offers capabilities for exporting and importing file system

containers, which can then serve as base images in any Dockerfile or Containerfile. Figure 17 outlines a

potential workflow for generating and uploading an OCI-compliant image using Microsoft's official Ubuntu

22.04 WSL2 distribution.

Figure 17: Sample workaround to export Microsoft’s official Ubuntu 22.04 WSL2 distribution into a Tarball, importing this Tarball as a file
system OCI image into Docker Desktop and finally uploading this OCI image to any corporate container registry.

PS C:\Users\{USER}> wsl --export Ubuntu-22.04 C:\Users\{USER}\wsl2-base.tar

PS C:\Users\{USER}> docker import C:\Users\{USER}\wsl2-base.tar base-local:0.0.1

PS C:\Users\{USER}> docker tag base-local:0.0.1 registry.sample.com/base-official:0.0.1

PS C:\Users\{USER}> docker push registry.sample.com/base-official:0.0.1

• Export official Ubuntu 22.04
 WSL2 distro to a Tarball

• Import the Tarball as a file system
 OCI container image

• Create a OCI target out of
 the local file system image

• Upload the local OCI target
 to a container registry
• Base image can be utilized with
 FROM command inside a Dockerfile

Using Docker Desktop in large-scale enterprises21

From here, it's up to each company to consider and apply appropriate security measures for the respective

WSL2 setup. It is important to note that, currently, root access to WSL cannot be prevented, allowing users to

potentially relax local security settings on their own. This demands to additionally establish terms of use for a

safe but productive usage of WSL. However, employing the following tools can enhance the overall enterprise-

grade of WSL:

• unattended-upgrades:

Automated installation of security updates and other selected packages without user intervention

• ufw (uncomplicated firewall):

Easy to use interface for managing firewall rules on Linux systems. Alternatively, WSL administrators can

utilize the Hyper-V firewall of the Windows host by enabling the firewall=true setting inside .wslconfig when

operating on Windows 11.

• Apply private sources and use proprietary SSL certificates:

Relying solely on private sources such as mirrored apt sources, npm registries, PyPI registries, etc.

• Disabling interoperability:

To enhance the isolation of the WSL environment, disable the execution of any Windows process from within

WSL. This can be achieved by setting interop=false inside /etc/wsl.conf. However, it is important to note that

this will lead to significant drawbacks and will weaken the development experience.

• Add company DNS servers:

To resolve private company domains, it's crucial to configure enterprise DNS servers in /etc/resolv.conf.

However, it's important to note that this configuration cannot be applied during image build but must be

done after deployment using the wsl.exe --exec <COMMAND> interface.

• Apply systemd as init process:

Enhancing the usability of WSL, enabling systemd as the init daemon is essential as many tools rely

on it, thereby improving the overall development experience. This can be achieved by activating the

systemd=true setting in /etc/wsl.conf. It is important to note that a WSL distribution must initially be

deployed without the systemd specification, requiring the use of the wsl.exe --exec <COMMAND> pattern

during the post-deployment routine.

• Apply a custom user setup:

Ensure that the local user needs to create an own Linux account when the first login to the WSL2 distribution.

• Apply a HTTP/HTTPS proxy:

When using Windows 11, enabling autoProxy=true and networkingMode=mirrored settings will extend local proxy

configurations from the Windows host to local WSL2 guests. While this setup allows tools like curl and wget

to access proxy information from the environment, additional configuration is required for tools such as apt

and git.

Using Docker Desktop in large-scale enterprises22

It is noteworthy that deploying an anti-malware solution that meets the demands of an enterprise

environment poses significant challenges since internet access and user credentials are required for

updating antivirus signatures, making centralized deployment a complex task. Moreover, it is essential to

highlight that Docker Desktop version 4.27 or later is necessary when interop functionality is turned off

as Docker Desktop persists the content of %USERPROFILE%/config.json to facilitate the use of the built-in

credential helper. With interop=false, these helper processes become unattainable from WSL2. However,

executing docker login or docker pull from any Windows shell interacting with those images from WSL2

works out of the box.

Figure 18: Excerpt of a Dockerfile for applying hardening measures on a WSL2 guest. The base image can be retrieved from the
standard Ubuntu WSL2 image, using the wsl.exe --export command for creating a TAR file and the docker import command to
create a filesystem

See image above for how this base image was initially created
FROM registry.sample.com/base-official:0.0.1

install tools such as ufw and unattended-upgrades
RUN apt update && apt upgrade -y && \
 DEBIAN_FRONTEND=noninteractive DEBCONF_NONINTERACTIVE_SEEN=true \
 apt install --no-install-recommends -f -y ufw unattended-upgrades … && \
 apt-get clean && rm -rf /var/lib/apt/lists/*

apply APT mirrored sources; do not forget to sign them
RUN mv /local/path/to/apt-mirror.list /etc/apt/sources.list

create an APT update timer for unattended-upgrades (do the same for apt upgrade)
RUN TIMER_PATH="/etc/systemd/system/%s.timer.d/override.conf" && \
 APT_UPDATE=$(printf $TIMER_PATH "apt-daily-update") && \
 mkdir -p $(dirname $APT_UPDATE) && \
 echo "[Unit]" > $TIMER_PATH && \
 echo "Description=Daily apt download activities" >> $TIMER_PATH && \
 echo "" >> $TIMER_PATH && \
 echo "[Timer]" >> $TIMER_PATH && \
 echo "OnCalendar=*-*-* 6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21:05" >> $TIMER_PATH && \
 echo "RandomizedDelaySec=23m" >> $TIMER_PATH && \
 echo "Persistent=true" >> $TIMER_PATH && …

apply custom firewall rules
RUN ufw default deny incoming && \
 ufw default deny outgoing && \
 ufw allow out from any to {APT_MIRROR} comment Outbound to APT mirror server' && \ … \

disable WSL2 to start host processes and prevent creation of resolv.conf to
incorporate company’s DNS server(s)
RUN echo "[interop]\nenabled = false" > /etc/wsl.conf && \
 echo "[network]\ngenerateResolvConf = false" >> /etc/wsl.conf

Using Docker Desktop in large-scale enterprises23

Finally, a customized OCI image can easily be deployed as a fully-featured WSL2 distribution at scale, utilizing the

same tools from above in reverse. Figure 19 below shows a sample approach that converts an OCI image with

Docker Desktop into a tarball and imports this tarball into the WSL2 environment. The distribution can, in turn, be

further provisioned using the wsl.exe --exec <COMMAND> command-line interface.

Figure 19: Sample pattern to export an OCI image into a Tarball with the aid of Docker Desktop, which can be imported into WSL2 as a
fully-featured distribution.

It is worth noting that companies should prioritize implementing the recommended administration and security

features offered by Microsoft Corp, such as the new networking stack, MDE plugin support, and Microsoft Intune

administration. However, if any of these tools are absent or if workstations encounter major issues like network

connectivity problems, the introduced hardening measures serve as a viable fallback solution.

PS C:\Users\{USER}> docker build -t custom-wsl2-img -f Dockerfile --build-arg …

PS C:\Users\{USER}> docker export --output C:\temp\custom-wsl2-
img.tar.gzcustom-wsl2-img

PS C:\Users\{USER}> wsl --import CUSTOM-22.04 --version 2 "C:\Users\{USER}\
custom-wsl" "C:\temp\custom-wsl2-img.tar.gz"

PS C:\Users\{USER}> wsl -d CUSTOM-22.04 -e bash -c "echo 'nameserver
<some-ip>' > /etc/resolv.conf"

• Create a local OCI image from
 a Dockerfile

• Export the OCI image file system

• Import local Tarball into WSL2
 as fully featured distribution

• Provision the custom distribution
 after it has been imported to WSL2

Using Docker Desktop in large-scale enterprises24

Unveiling Windows Containers
best practices
Consider notable security aspects
As outlined in Exploring complexities of Windows container engine architecture, the Windows container

engine dockerd.exe runs with elevated privileges on the host machine, which can be verified as shown in

Figure 20 below.

Figure 20: Overview of Docker Desktop’s processes that run with SYSTEM rights on the Windows host machine.

The NT AUTHORITY\SYSTEM represents a Windows security principle that grants its users the highest privileges

within the Windows operating system. Processes initiated under this principle have almost unrestricted

access to system resources. Thus, any Windows container launched with dockerd.exe inherits these privileges,

enabling it to seamlessly interact with the underlying NT kernel, which, in turn, includes tasks such as altering

system files or interfacing with system services.

Windows generally offers two container types with a distinct isolation level from the underlying host

system. Firstly, there are so-called "process-isolated" containers, which are employed directly on the host

machine and, thus, effectively operate as operating system features. If compromised by an attacker, these

containers significantly increase the attack surface. Secondly, there are so-called "hyperv-isolated" Windows

containers, which utilize a container within a stripped-down and isolated Microsoft Hyper-V VM named

"DockerDesktopVM". Those containers run alongside the Windows NT kernel on the Hyper-V layer (see Figure

3), creating a robust security boundary since a hardware exploit is required to finally compromise the host.

However, dockerd.exe grants SYSTEM permissions to any bind-mounted directory, potentially offering extensive

system-level access. Consequently, this could present a significant vulnerability, particularly in production

environments, in case sensitive directories such as C:\Windows are bind-mounted, as shown in Figure 21.

List all services associated with Docker Desktop

PS C:\WINDOWS\system32>Get-Process-IncludeUserName | Where-Object { $_.ProcessName-
like'*docker*' }

Handles WS(K) CPU(s) Id UserName ProcessName

592 64136 796 NT AUTHORITY\SYSTEM com.docker.service

...

116 26416 3182 < DOMAIN>\<USER> docker

204 49392 3868 <DOMAIN>\<USER> Docker Desktop

351 45236 12144 NT AUTHORITY\SYSTEM docker

Using Docker Desktop in large-scale enterprises25

Figure 21 :Possible entry point for a Local Privilege Escalation (LPE) through a bind-mount on C:\Windows directory.

In addition, enterprises that deploy Docker Desktop with its Windows container engine at scale should consider

that their developers could misuse Docker Desktop to gain unauthorized SYSTEM privileges of the local system.

This could introduce the risks for misconfiguration and local admin rights. For instance, developers could

expose the REST interface of the Windows container engine via TCP port 2375 without proper Transport Layer

Security (TLS) protection. They could also relax the local Windows firewall to reach the engine outside the

company network (see Figure 22). This could be a potential entry point for an attacker to compromise the

local machine and the company’s network. Therefore, it is highly advisable to implement a code of conduct to

ensure responsible and compliant usage or to completely prevent the usage of Windows containers by using

the --no-windows-container installer flag as outlined in Crafting a smooth installation procedure.

Figure 22: Sample pattern to expose the REST interface of the Windows container engine, dockerd.exe, via TCP and running a Windows
container with bind-mount on the sensitive C:\Windows drive via a REST request.

Define content for exposing the REST interface
PS C:\Users\{USER}> $jsonContent = @{"hosts" =@("tcp://0.0.0.0:2375")

}

Convert the PS object to JSON format
PS C:\Users\{USER}> $jsonString = $jsonContent | ConvertTo-Json

Apply changes to Windows container engine
PS C:\Users\{USER}> $jsonString | Set-Content -Path
"C:\ProgramData\docker\config\daemom.json"

Define request body for running a Windows container with bind-mount on "C: \Windows"

PS C:\Users\{USER}> $restBody = @{
 Image = "my-container-image"
HostConfig = @{
 Binds = @("C:\Windows:C:\mnt")
 }
 Privileged = $true
} | ConvertTo-Json

Create the container via REST request
PS C:\Users\{USER}> Invoke-WebRequest -Uri "<YOUR-IP>/containers/
 create?name=mycontainer " `
 -Method Post `
 -Body $restBody `
 -ContentType 'application/json'

Run the container via REST request
PS C:\Users\{USER}> Invoke-WebRequest -Uri "$apiUrl/containers/mycontainer /start"
 -Method

Bind mount of Windows system directory into a Hyper-V container

PS C:\Users\{USER}> docker run -it --rm -v C:\Windows:C:\mnt windows:20H2 powershell

Using Docker Desktop in large-scale enterprises26

In the security context, working solely with "hyperv-isolated" containers is highly recommended due to their

strong isolation from the host system. Nevertheless, the utilization of these container types includes several

drawbacks, including the absence of GPU acceleration support, missing hardware device integration, and the

potential for malware to exploit a container vulnerability and remain undetected within the container, as those

containers are "black-boxed" for antivirus solutions safeguarding the host, too. Thus, enterprises are strongly

recommended to implement global control mechanisms that ensure only Windows containers built with best

practices can be deployed for both inner development tasks and used for productional targets. Best practices

include allowing solely unprivileged users, like the built-in ContainerUser, to run a container or enabling natural

Windows host protection mechanisms such as antivirus solutions within a Windows container. Additionally, it

is noteworthy that the business customer features Registry Access Management (RAM) and Image Access

Management (IAM), outlined in Choosing The Right Pricing Model, shine since they provide global control over

images' access.

Unveiling network connectivity issues
Windows containers operating within a complex enterprise environment with strict firewall rules, corporate

Domain Name Servers (DNS), a Virtual Private Network (VPN), etc. often encounter notable networking issues.

These issues prevent smooth development workflows in real-world scenarios, such as accessing license

servers, retrieving artifacts from remote sources, or providing their services to remote agents. We first need

to look at the standard network setup when launching Windows containers on a Windows 10 (22H2) host

machine to unveil the main networking challenges.

When launching Docker Desktop's Windows container engine for the first time, Docker Desktop will create a

default network with the name "nat". This network is configured as a NAT-mode network and integrates an

internal Hyper-V Virtual Switch. Any freshly instantiated container will automatically connect to this network

unless another network is designated using the --network flag, as shown in Figure 25 below.

Using Docker Desktop in large-scale enterprises27

Figure 23: The instantiated Windows container named "foo" automatically connects to the Docker’s default "nat" network. The sample IP
172.23.173.43 of the container is assigned from the internal prefix IP range of 172.23.160.0/20

Upon establishing an interactive session with any instantiated container, as shown in Figure 24, we can verify

the container's network interface by executing the command ipconfig /all. In addition, it can be revealed that

the container, for currently unknown reasons, fails to ping the default gateway of its own network. Additionally,

this gateway is configured as the default DNS server of a Windows Container, which leads to the issue that

commands such as Invoke-WebRequest or nslookup, as well as tools such as pip, npm, etc., cannot resolve

company-specific domain names and thus, are not working correctly, even in case the container can connect

to the gateway.

Run a standard Windows 20H2 container

PS C:\Users\{MY_USER}> docker run --name foo mcr.microsoft.com/windows:20H2 powershell.exe

Inspect the default "nat" network
PS C:\Users\FIXCYBJ> docker network inspect nat
[
 {
 "Name": "nat",
 ...
 "IPAM": {
 "Driver": "windows",
 "Options": null,
 "Config": [
 {
 "Subnet": "172.23.160.0/20",
 "Gateway": "172.23.160.1"
 }
]
 },
 ...
 "Containers": {
 "873c787f755e2fa40efde5b59ad68c8b8d16d50abf4118e1de1d1dff718be9e7": {
 "Name": "foo",
 ...
 "IPv4Address": "172.23.173.43/16",
 ...
 }
 },
 "Options": {
 "com.docker.network.windowsshim.hnsid": "78B73D13-9DEF-40F5-9F5C-5C45174C3FF7",
 "com.docker.network.windowsshim.networkname": "nat"
 },
 "Labels": {}
 }
]

Using Docker Desktop in large-scale enterprises28

Figure 24: Default network setup of a running Windows container where the default DNS server is set to the network gateway. Under
certain but unknown conditions, the container is not able to reach the gateway and, thus, to connect to any internal orexternal target

To resolve these issues, the first step involves configuring the Windows container engine to prevent utilizing the

default gateway as the default DNS server for NAT-mode networks. This configuration can be accomplished

by deploying the admin-settings.json file, as shown in Figure 14, where the value for com.docker.network.

windowsshim.disable_gatewaydns is set to false. Unfortunately, this global configuration is not automatically

applied to the default "nat" network. Consequently, the second crucial step involves creating a custom NAT-

mode network to which any instantiated container needs to be connected by providing the --network flag. It is

essential to ensure that the first three octets of both the gateway and subnet align, as depicted in Figure 25.

This ensures that the container can resolve its network-related problems.

Launch standard Windows 10 (20H2) container
PS C:\Windows\Users\{MY_USER}>docker exec-it foo powershell.exe

Inspect network settings and interface
PS C:\> ipconfig /all

Windows IP Configuration
 Host Name : 873c787f755e
 ...
 DNS Suffix Search List. : {COMPANY_SUFFIX}

Ethernet adapter Ethernet:
 Connection-specific DNS Suffix . : {COMPANY_SUFFIX}
 Description : Microsoft Hyper-V Network Adapter
 ...
 Link-local IPv6 Address : fe80::9cc8:6bd8:d3d7:fbfae%4(Preferred)
 IPv4 Address. : 172.23.173.43(Preferred)
 Subnet Mask : 255.255.240.0
 Default Gateway : 172.23.160.1
 ...
 DNS Servers : 172.23.160.1
 10.111.11.35
 NetBIOS over Tcpip. : Disabled

Reach the gateway of the "nat" network
PS C:\> ping 172.23.160.1

Pinging 172.23.160.1 with 32 bytes of data:
Request timed out.
Request timed out.

Using Docker Desktop in large-scale enterprises29

Figure 25: Creating a custom NAT-mode network with modified network settings to overcome networking issues for any local Windows
container that connects to this network

Finally, persistent networking issues might arise from the Windows host's strict firewall rules, which actively

deny specific network traffic from local Windows containers. In this context, it is essential to precisely review

the Windows firewall log files under C:\Windows\System32\LogFiles\Firewall and define suitable ALLOW rules

to regulate both incoming and outgoing network traffic fine-granularly. Figure 26 below illustrates how the

Windows Defender Firewall logs an actively dropped ping command.

Figure 26: Sample log of a dropped ping initiated by a Windows container with IP 172.9.128.55 to the default gateway with destination IP
172.9.128.1. The DROP, in turn, demonstrates enabled network connetivity of a Windows containers

2024-02-09 10:00:00 DROP ICMP 172.9.128.54 172.9.128.109 10:00:00 DROP ICMP 172.9.128.54
172.9.128.1--6060----8 08 0-RECEIVE

Creating a custom NAT-mode network named "nat2"

PS C:/Users/{USER}> docker network create-d nat--gateway172.9.128.1--subnet 172.9.128.0/24nat2

Connecting a Windows container to the custom "nat2" network

PS C:/Users/{USER}> docker run--rm-it--network nat2 mcr.microsoft.com/windows:20H2powershell.exe

Try to ping the default gateway

PS C:/> ping 172.9.128.1

Pinging 172.9.128.1 with 32 bytes of data:

Reply from 172.9.128.1: bytes=32 time=20ms TTL=248

CTRL + C

Ping statistics for 172.9.128.1:

 Packets: Sent = 1, Received = 1, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

 Minimum = 20ms, Maximum = 20ms, Average = 20ms

Using Docker Desktop in large-scale enterprises30

Further enterprise considerations
Docker Desktop strongly emphasizes human-machine interaction, making it an ideal container manager for

the local developer workstation. However, many organizations find a need to supplement capabilities with

other tools in CI/CD environments. Consequently, enterprises shall utilize both Windows and Linux Docker

Community Edition (CE) or any other suitable container manager when integrating container workloads into

their pipelines.

Furthermore, it is highly recommended that companies incorporate available container security tools into their

development workflows. A highly advisable tool is Docker Bench For Security, which is a comprehensive and

user-friendly self-assessment tool that validates Linux-based images against best practices. By utilizing this

tool, container creators can enhance the quality of their images and ensure adherence to security standards.

Unfortunately, Docker Bench for Security does not support Windows Containers. In addition, the usage of

Docker Scout, which is available for business customers, significantly increases the image quality as it can be

used for vulnerability scanning, creation of so-called Software Bills of Materials (SBOMs), and gives proactive

advice on overcoming existing vulnerabilities.

Finally, weakly designed container images, such as those utilizing outdated base images, sharing sensitive

information, granting unnecessary read or write permissions, or initiating as privileged users during

startup, present significant security risks to the host system, particularly when deployed in production

environments. For instance, running a Linux container with root privileges or a Windows container as the

containeradministrator user allows attackers a straightforward pathway to compromise the container and the

underlying host system by launching elevated processes. For example, attackers could exploit this vulnerability

by leveraging package managers to install tools for SSH usage, inject private SSH keys, and execute privilege

escalations. Hence, enterprises must establish a centralized approach to oversee and control the image build

and distribution process.

Using Docker Desktop in large-scale enterprises31

References
• Cyberark Software Ltd. (2023, April 19). Breaking Docker Named Pipes SYSTEMatically: Docker Desktop

Privilege Escalation. Retrieved from https://www.cyberark.com/resources/threat-research-blog/

breaking-docker-named-pipes-systematically-docker-desktop-privilege-escalation-part-2

• Docker Inc. (2023). Docker Bench Security Official Repository. Retrieved from https://github.com/docker/

docker-bench-security

• Docker Inc. (2023). Hardened Desktop Whitepaper. Retrieved from https://www.docker.com/wp-content/

uploads/2023/01/hardened-desktop-whitepaper.pdf

• Docker Inc. (2024). Docker Desktop Documentation. Retrieved from https://docs.docker.com/desktop

• Loewen, C. (2023, 11 15). Windows Command Line. Retrieved from https://devblogs.microsoft.com/

commandline/new-enterprise-grade-security-controls-for-the-windows-subsystem-for-linux/

• Microsoft Corp. (2024). Container Security. Retrieved from https://learn.microsoft.com/en-us/virtualization/

windowscontainers/manage-containers/container-security

• Microsoft Corp. (2024). Windows Container Engines. Retrieved from Get started: Prep Windows for containers:

https://learn.microsoft.com/en-us/virtualization/windowscontainers/quick-start/set-up-environment

• Microsoft Corp. (2024). WSL Repository. Retrieved from WSL Repository: https://github.com/microsoft/WSL

Using Docker Desktop in large-scale enterprises32

